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My work is focused on the interplay between numerical optimization, statistical learning, and signal
processing. My research interests tend to be influenced by classical results in parametric and nonparametric
statistics. In what follows, I review particular areas of my current work and envisioned future directions.

Current directions

Fast learning rates via self-concordance. In [15], I have investigated the connection of generalized
self-concordance of the loss in connection with fast rates for the excess risk of the corresponding M -
estimators. Self-concordance was introduced by [14] in the context of interior-point algorithms; a convex,
and sufficiently smooth, loss is called self-concordant if its third derivative is upper-bounded with the
3/2 power of the second. I demonstrated that self-concordance and its extension introduced in [1] in
the context of logistic regression, is instrumental in quantifying the generalization properties of the
associated M -estimators with random design, and allows to obtain fast rates. Essentially, it allows to
“sew together” the local quadratic approximations of the risk, resulting in similar generalization results as
in the case of random-design linear regression. It is remarkable that the obtained results only require
local assumptions about the loss derivatives at the optimal parameter value – similarly to the classical
assymptotic theory. I am currently extending the framework to the non-parametric setup.

Structure-adaptive signal recovery. Consider estimation of a real- or complex-valued discrete-time
signal x := (xτ ), where −n ≤ τ ≤ n, from noisy observations y := (yτ ) given by yτ = xτ + σξτ , where
the noise variables ξτ are i.i.d. standard Gaussian, real or complex. More precisely, the goal can be
to recover x on the integer points of the whole domain [−n, n] or some subdomain such as [0, n]. The
classical approach to signal denoising to assume that x comes from a known set X with a simple structure
(such as an ellipsoid or a rectangle in `2) that can be exploited to construct the estimator; In all these
cases, estimators with near-optimal statistical performance can be computed explicitly, and correspond to
linear functionals of y – hence the name linear estimators.

My research has been focused on certain families of non-linear estimators with larger applicability
and strong theoretical guarantees, applicable when the structure of the signal is unknown beforehand.
Assuming for convenience that one must estimate xt only on [0, n], these estimators can be expressed as

x̂ϕt = [ϕ ∗ y]t :=
∑
τ

ϕτyt−τ 0 ≤ t ≤ n, (1)

here summation is over Z taking into account the boundaries; ∗ is the (non-circular) discrete convolution,
and the filter ϕ is supported on [0, n] which we write as ϕ ∈ Cn(Z). Non-linearity of the estimator is
due to the fact that the filter is obtained as an optimal solution to some convex optimization problem.
Such optimization problems rest upon a common principle – minimization of the Fourier-domain `p-norm
residual ‖Fn[y − ϕ ∗ y]‖p, regularized with the Fourier-domain `1-norm ‖Fn[ϕ]‖1 of the filter.

In the series of papers [7, 18, 17], I have explored, together with coauthors, the general statistical
properties of adaptive convolution-type estimators. In particular, in [7] we studied `∞-fit estimators,
demonstrating that such estimators allow to adapt to the unknown best linear filter – “linear oracle” –
under the recoverability assumption, first introduced in [9], which essentially states that the `2-norm of
the oracle is much smaller than the sample size. These guarantees were stated in the form of finite-sample
high-probability oracle inequalities for the pointwise and `2-norm error.

In [18] and [17], I have studied `2-fit estimators, showing that they enjoy better adaptation properties
than the `∞-fit ones. In particular, oracle inequalities in the case of `2 fit can be made sharp, i.e. hold
with the unit leading constant, under the approximate shift-invariance asssumption that states that the
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extension of x to Z belongs to arbitrary, and unknown, shift-invariant linear subspace S of C∞(Z) with
small dimension, or is (locally) close to such a subspace in `p-norm. From [9, 10] it has been known that
the recoverability assumption is implied by the (exact) shift-invariance assumption. However, the known
bounds for the `2-norm scaled exponentially with the subspace dimension dim(S). In [18], we proved
a polynomial in dim(S) upper bound on the oracle norm, with the lower bound of O(

√
dim(S)). This

result was improved in [17]; in particular, the gap was closed for the special class of bilateral filters.
In [16], I have studied the question of efficient algorithmic implementation of adaptive filtering

estimators. I have devised first-order proximal algorithms adapted to the special structure of the
associated optimization problems. First-order algorithms have a special appeal in these problems, since
in this case evaluation of the gradient can be efficiently implemented via the Fast Fourier transform.
In [16], I advocated two particularly suitable families of algorithms for the computation of adaptive
convolution-type estimators, based on Nesterov’s Accelerated Gradient and Mirror Prox algorithms [13].
Besides, I have rigorously established the “statistical complexity” of the proposed algorithms – the number
of iterations sufficient to match the statistical performance of the precise estimator.

Currently, I am investigating the natural extension of the structure-adaptive denoising problem to the
case of indirect observations of the form yτ = [a ∗ x]τ + σξτ . Here a ∈ Cm(Z) is a given observation filter,
and the goal is still to recover x, i.e., perform deconvolution from noisy observations. Compared to the
case of direct observations, statistical assumptions of existing methods are often too restrictive [4], and
even some of the basic questions are beyond their grasp. As such, it would be interesting to extend the
adaptive filtering techniques to this more general scenario. Potentially, this could lead to some progress in
the classical problem of identification of a linear dynamical system observing its output in the noise [2, 8].

Efficient algorithms for large-scale multiclass learning. Here I investigate finite-sum optimization
problems arising as the empirical risk objective in linear classification with very large number of classes
and dimensionality of the feature space. My focus is on so-called Fenchel-Young losses [3] that can be
represented as the maximum of a finite number of affine functions. This leads to well-structured bilinear
saddle-point problems, which can be efficiently solved with certain stochastic primal-dual algorithms
(see [13]) equipped with ad-hoc variance reduction techniques.

Covariance estimation for heavy-tailed distributions. Recently, Wei and Minsker [21] proposed

an estimator Σ̂WM of the covariance matrix Σ with a remarkable property: its deviations from the target,
measured in the spectral norm, are subgaussian under extremely weak moment assumptions on the
underlying distribution. For the chosen criterion, this result is near-optimal. On the other hand, in some
applications one is interested in relative error bounds, i.e., approximating Σ via Σ̂, up to a multiplicative
factor close to one, in the positive-semidefinite sense. Obtaining such guarantees for the estimator Σ̂WM is
non-trivial due to its non-linearity in observations, and constitutes another direction of my current work.

Future directions

Geometric statistical signal processing. Many signal processing problems involve data on Rieman-
nian manifolds or graphs. For instance, in computer graphics and vision, 3D objects are modeled as
manifolds endowed with properties such as color or texture, or alternatively, as graphs arising when
discretizing these manifolds. Other relevant examples include the models of social networks [11], gene
expression data, and dynamic models in neuroscience [19], in all of which one has to deal with multiple
time-varying processes in the nodes of a large graph whose edges describe correlation between the processes.
Exploiting the underlying structure is often vital in these applications, and the techniques of adaptive
denoising and deconvolution, after proper generalization, can be capable of inferring this structure.

Post-selection inference. Linear regression is a simple and powerful statistical technique. Not only
it allows to estimate the impacts of explanatory variables in the form of regression coefficients, but it also
provides confidence intervals for these estimates. However, in modern datasets, the number of candidate
variables is often much larger than the sample size, whereas only a small number of them are actually
relevant. In these conditions, one would prefer first to select only (supposedly) relevant variables by
means of some model selection procedure, and then to regress only on these variables. The problem
with this approach is that the usual confidence intervals tend to be too narrow since the inference is
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now performed on a model which depends on the data and may prove to be wrong with non-vanishing
probability. Current quantitative explanations of this phenomenon, see, e.g., [12] and [5], require some
stringent assumptions and lack non-asymptotic results, so a lot can potentially be done in this direction.

Non-Euclidean performance estimation. In [6], Drori and Teboulle proposed a novel approach for
the analysis of the worst-case performance of first-order proximal algorithms that allows to explicitly
obtain worst-case problem instances over global complexity classes (such as those of smooth and/or
strongly convex functions) for a particular optimization algorithm, as an optimal solution to certain convex
program called performance estimation program. This could then be used to fine-tune the algorithm,
and in some cases, improve over the existing black-box complexity bounds [20]. However, the existing
techniques of performance estimation are restricted to Euclidean geometry, as such geometry is required
to cast performance estimation programs as semi-definite programs which can then be efficiently solved.
Extending performance estimation techniques to non-Euclidean geometries is an interesting open problem.
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